Python 代码检查工具:整洁代码指南
使用现代代码检查工具掌握 Python 代码质量
Python linters 是必不可少的工具,它们可以在不执行代码的情况下分析代码中的错误、风格问题和潜在的 bug。 它们强制执行编码标准,提高可读性,并帮助团队维护高质量的代码库。
使用现代代码检查工具掌握 Python 代码质量
Python linters 是必不可少的工具,它们可以在不执行代码的情况下分析代码中的错误、风格问题和潜在的 bug。 它们强制执行编码标准,提高可读性,并帮助团队维护高质量的代码库。
使用 Go 微服务构建强大的 AI/ML 管道
随着人工智能和机器学习工作负载变得越来越复杂,对强大的编排系统的需求也变得更为迫切。Go语言的简洁性、性能和并发特性使其成为构建机器学习流水线的编排层的理想选择,即使模型本身是用Python编写的。
在共享的嵌入空间中统一文本、图像和音频
跨模态嵌入 代表了人工智能领域的一项突破,它使不同数据类型能够在统一的表示空间中实现理解和推理。
高效地将 LaTeX 文档转换为 Markdown
将LaTeX文档转换为Markdown已成为现代出版工作流程中的关键环节,它能够整合静态站点生成器、文档平台和版本控制系统,同时保持可读性和简洁性。
从代码到 PyPI 部署,掌握 Python 包管理
Python打包 已经有了显著的发展,现代工具和标准使得分发你的代码比以往任何时候都更容易。
在预算硬件上部署企业级AI,使用开放模型
人工智能的民主化已经到来。
借助像 Llama 3、Mixtral 和 Qwen 这样的开源大语言模型(LLM),团队现在可以使用消费级硬件构建强大的 AI 基础设施 - 在降低成本的同时,仍能完全控制数据隐私和部署。
用先进的反指纹技术保护您的隐私
在现代网络中,您的数字身份可以通过复杂的数字指纹追踪技术,在不使用 cookie 或明确同意的情况下被追踪。
LongRAG、Self-RAG、GraphRAG - 下一代技术
检索增强生成(RAG) 已经远远超越了简单的向量相似性搜索。 LongRAG、Self-RAG 和 GraphRAG 代表了这些能力的前沿。
使用自动文档和类型安全构建超快速的 API
FastAPI 已经成为构建 API 最令人兴奋的 Python Web 框架之一,结合了现代 Python 特性、卓越的性能和开发体验。
掌握数据科学工作中 Linux 环境的设置
Linux 已成为数据科学专业人士事实上的操作系统,提供无与伦比的灵活性、性能和丰富的工具生态系统。
使用SOLID设计模式构建可维护的Python应用程序
Clean Architecture 通过强调关注点分离和依赖管理,彻底改变了开发人员构建可扩展、可维护应用程序的方式。
使用GGUF量化加速FLUX.1-dev
FLUX.1-dev 是一款功能强大的文本到图像模型,能够生成令人惊叹的结果,但其24GB以上的内存需求使得在许多系统上运行变得具有挑战性。 FLUX.1-dev的GGUF量化版本 提供了一种解决方案,将内存使用量减少约50%,同时保持出色的图像质量。
用于根据文本指令增强图像的AI模型
Black Forest Labs 已发布 FLUX.1-Kontext-dev,这是一款先进的图像到图像 AI 模型,它可以通过文本指令增强现有图像。
通过智能令牌优化,将大语言模型成本降低80%
令牌优化是区分成本效益高的LLM应用与耗费预算的实验的关键技能。
基于 AWS Kinesis 的事件驱动架构实现可扩展性
AWS Kinesis 已成为构建现代事件驱动微服务架构的基石,它能够以最小的操作开销实现大规模的实时数据处理。
使用 pytest 进行 Python 测试,TDD,模拟和覆盖率
单元测试确保你的 Python 代码正常工作,并且随着项目的演进继续正常运行。
本全面指南涵盖了关于 Python 单元测试 的所有内容,从基本概念到高级技术。