
Gemma2 vs Qwen2 vs Mistral Nemo vs...
Testowanie wykrywania błędnego rozumowania
Niedawno widzieliśmy kilka nowych LLM, które zostały wydane. Wspaniałe czasy. Sprawdźmy i zobaczmy, jak działają, gdy wykrywają błędy logiczne.
Testowanie wykrywania błędnego rozumowania
Niedawno widzieliśmy kilka nowych LLM, które zostały wydane. Wspaniałe czasy. Sprawdźmy i zobaczmy, jak działają, gdy wykrywają błędy logiczne.
Nieco mniej do wyboru, ale nadal...
Kiedy zacząłem eksperymentować z LLM, interfejsy do nich były w aktywnym rozwoju, a teraz niektóre z nich są naprawdę dobre.
Wymaga pewnego doświadczenia, ale
Nadal istnieją pewne powszechne podejścia do pisania dobrych promptów, dzięki czemu LLM nie będzie się pogubił, próbując zrozumieć, czego od niego oczekujesz.
8 wersji llama3 (Meta+) i 5 wersji phi3 (Microsoft) LLM
Testowanie działania modeli o różnej liczbie parametrów i stopniu kwantyzacji.
Pliki modeli LLM Ollama zajmują dużo miejsca.
Po zainstalowaniu ollama lepiej jest natychmiast skonfigurować Ollama, aby przechowywać je w nowym miejscu. Wtedy, gdy pobieramy nowy model, nie zostaje on pobrany do starego lokalizacji.
Sprawdźmy prędkość LLM na GPU vs CPU
Porównanie prędkości przewidywania kilku wersji modeli językowych (LLM): llama3 (Meta/Facebook), phi3 (Microsoft), gemma (Google), mistral (open source) na procesorze (CPU) i karcie graficznej (GPU).
Sprawdźmy jakość wykrywania błędów logicznych przez różne LLM-y
Oto porównanie kilku wersji LLM: Llama3 (Meta), Phi3 (Microsoft), Gemma (Google), Mistral Nemo (Mistral AI) oraz Qwen (Alibaba).