LLM

Microservices Go pour l'orchestration AI/ML

Microservices Go pour l'orchestration AI/ML

Construisez des pipelines d'IA/ML solides avec des microservices Go

Alors que les charges de travail d’IA et de ML deviennent de plus en plus complexes, le besoin de systèmes d’orchestration robustes est devenu plus important que jamais. La simplicité, la performance et la concurrence de Go en font un choix idéal pour construire la couche d’orchestration des pipelines ML, même lorsque les modèles eux-mêmes sont écrits en Python.

Infrastructure d'IA sur le matériel grand public

Infrastructure d'IA sur le matériel grand public

Déployez l'intelligence artificielle d'entreprise sur des matériels abordables avec des modèles open source

La démocratisation de l’IA est ici. Avec des LLM open source comme Llama 3, Mixtral et Qwen qui rivalisent désormais avec les modèles propriétaires, les équipes peuvent construire une infrastructure puissante d’IA à l’aide du matériel grand public - réduisant les coûts tout en maintenant un contrôle complet sur la confidentialité des données et le déploiement.

Exécuter FLUX.1-dev GGUF Q8 en Python

Exécuter FLUX.1-dev GGUF Q8 en Python

Accélérer FLUX.1-dev avec la quantification GGUF

FLUX.1-dev est un modèle puissant de génération d’images à partir de texte qui produit des résultats impressionnants, mais sa demande en mémoire de 24 Go ou plus le rend difficile à exécuter sur de nombreux systèmes. Quantification GGUF de FLUX.1-dev offre une solution, réduisant l’utilisation de la mémoire d’environ 50 % tout en maintenant une excellente qualité d’image.

NVIDIA DGX Spark vs Mac Studio vs RTX-4080 : Comparaison des performances d'Ollama

NVIDIA DGX Spark vs Mac Studio vs RTX-4080 : Comparaison des performances d'Ollama

Benchmarks GPT-OSS 120b sur trois plateformes d'IA

J’ai découvert quelques tests de performance intéressants du modèle GPT-OSS 120b exécuté sur Ollama sur trois plateformes différentes : NVIDIA DGX Spark, Mac Studio et RTX 4080. Le modèle GPT-OSS 120b de la bibliothèque Ollama pèse 65 Go, ce qui signifie qu’il ne peut pas s’adapter dans les 16 Go de VRAM d’une RTX 4080 (ou même sur la nouvelle RTX 5080).

L'essor des ASIC pour LLM : pourquoi le matériel d'inférence compte

L'essor des ASIC pour LLM : pourquoi le matériel d'inférence compte

Les puces spécialisées rendent l'inférence d'IA plus rapide et moins coûteuse.

L’avenir de l’IA ne concerne pas seulement des modèles plus intelligents [https://www.glukhov.org/fr/post/2025/06/qwen3-embedding-qwen3-reranker-on-ollama/ “Modèles Qwen3 embedding et reranker - performance d’avant-garde”] - il concerne des siliciums plus intelligents.
L’évolution vers un matériel spécialisé pour l’inférence des LLM entraîne une révolution similaire à celle du passage du minage de Bitcoin aux ASICs.