Open WebUI : Interface Autohébergée pour LLM
Alternative auto-hébergée à ChatGPT pour les LLMs locaux
Ouvrir WebUI est une interface web puissante, extensible et riche en fonctionnalités pour interagir avec les grands modèles de langage.
Alternative auto-hébergée à ChatGPT pour les LLMs locaux
Ouvrir WebUI est une interface web puissante, extensible et riche en fonctionnalités pour interagir avec les grands modèles de langage.
Le calendrier technologique essentiel de Melbourne pour 2026
La communauté technologique de Melbourne continue de prospérer en 2026 avec une impressionnante programmation de conférences, rencontres et ateliers couvrant le développement logiciel, l’informatique en nuage, l’IA, la cybersécurité et les technologies émergentes.
Inférence rapide de LLM avec l'API OpenAI
vLLM est un moteur d’inférence et de service pour les grands modèles de langage (LLM) développé par le Sky Computing Lab de l’UC Berkeley. Grâce à son algorithme révolutionnaire PagedAttention, vLLM atteint un débit 14 à 24 fois supérieur aux méthodes de service traditionnelles, ce qui en fait le choix privilégié pour les déploiements de production de LLM.
Maîtrisez l'extraction de texte PDF avec Python
PDFMiner.six est une bibliothèque Python puissante pour extraire du texte, des métadonnées et des informations de mise en page à partir de documents PDF.
Maîtrisez l'automatisation des navigateurs pour les tests et le scraping
Playwright est un cadre d’automatisation de navigateur puissant et moderne qui révolutionne le scraping web et les tests de bout en bout.
Guide technique pour la détection de contenu généré par IA
La prolifération du contenu généré par l’IA a créé un nouveau défi : distinguer les écrits humains authentiques du « brouillon d’IA » - du texte synthétique de faible qualité, produit en masse.
Test de Cognee avec des LLMs locaux - résultats réels
Cognee est un framework Python pour construire des graphes de connaissances à partir de documents en utilisant des LLMs. Mais fonctionne-t-il avec des modèles auto-hébergés ?
Sorties de LLM type-sûres avec BAML et Instructor
Lors de l’utilisation de grands modèles de langage en production, obtenir des sorties structurées et de type sûr est essentiel. Deux frameworks populaires - BAML et Instructor - adoptent des approches différentes pour résoudre ce problème.
Réflexions sur les LLMs pour l'auto-hébergement de Cognee
Choisir le Meilleur LLM pour Cognee demande de trouver un équilibre entre la qualité de construction de graphes, les taux d’hallucination et les contraintes matérielles. Cognee excelle avec des modèles plus grands et à faible taux d’hallucination (32B+) via Ollama, mais des options de taille moyenne conviennent aux configurations plus légères.
Modèles de conception DI Python pour un code propre et testable
L’injection de dépendances (DI) est un motif de conception fondamental qui favorise un code propre, testable et maintenable dans les applications Python.
Raccourcis essentiels et commandes magiques
Améliorez rapidement la productivité avec le Jupyter Notebook grâce à des raccourcis essentiels, des commandes magiques et des conseils de workflow qui transformeront votre expérience en science des données et en développement.
Construisez des agents de recherche IA avec Python et Ollama
La bibliothèque Python d’Ollama inclut désormais des capacités natives de recherche web Ollama. Avec quelques lignes de code, vous pouvez enrichir vos modèles locaux de LLM avec des informations en temps réel provenant du web, réduisant ainsi les hallucinations et améliorant la précision.
Choisissez le bon DB vectoriel pour votre pile RAG
Le choix du bon stockage vectoriel peut faire la différence entre le succès et l’échec de votre application RAG en termes de performance, de coût et d’évolutivité. Cette comparaison approfondie couvre les options les plus populaires en 2024-2025.
Maîtrisez la qualité du code Python avec des outils de linting modernes
Les linters Python sont des outils essentiels qui analysent votre code pour détecter des erreurs, des problèmes de style et des bugs potentiels sans l’exécuter. Ils appliquent des normes de codage, améliorent la lisibilité et aident les équipes à maintenir des bases de code de haute qualité.
Construisez des pipelines d'IA/ML solides avec des microservices Go
Alors que les charges de travail d’IA et de ML deviennent de plus en plus complexes, le besoin de systèmes d’orchestration robustes est devenu plus important que jamais. La simplicité, la performance et la concurrence de Go en font un choix idéal pour construire la couche d’orchestration des pipelines ML, même lorsque les modèles eux-mêmes sont écrits en Python.
Unifiez le texte, les images et l'audio dans des espaces d'embedding partagés
Embeddings crois-modaux représentent une avancée majeure en intelligence artificielle, permettant de comprendre et de raisonner à travers différents types de données au sein d’un espace de représentation unifié.