PyTorch

Ga naar microservices voor AI/ML-orchestratie

Ga naar microservices voor AI/ML-orchestratie

Maak robuuste AI/ML-pijplijnen met Go-microservices

Aan de slag met AI- en ML-werkbelastingen die steeds complexer worden, is het belangrijk dat er robuuste orkestratiesystemen zijn. De eenvoud, prestaties en gelijktijdigheid van Go maken het ideaal om de orkestratielag van ML-pijplijnen te bouwen, zelfs als de modellen zelf in Python zijn geschreven.

FLUX.1-dev GGUF Q8 uitvoeren in Python

FLUX.1-dev GGUF Q8 uitvoeren in Python

Versnel FLUX.1-dev met GGUF-quantisatie

FLUX.1-dev is een krachtig tekst-naar-afbeelding model dat indrukwekkende resultaten produceert, maar zijn geheugengebruik van 24GB+ maakt het lastig om te draaien op veel systemen. GGUF-quantisatie van FLUX.1-dev biedt een oplossing, met een verminderings van het geheugengebruik met ongeveer 50% terwijl de afbeeldingskwaliteit goed behouden blijft.