API

Создание микросервисов на основе событий с использованием AWS Kinesis

Создание микросервисов на основе событий с использованием AWS Kinesis

Архитектура на основе событий с использованием AWS Kinesis для масштабируемости

AWS Kinesis стал основой для создания современных микросервисных архитектур, работающих на основе событий, обеспечивая обработку данных в реальном времени с минимальными операционными затратами.

Шпаргалка по Elasticsearch: Основные команды и советы

Шпаргалка по Elasticsearch: Основные команды и советы

Команды Elasticsearch для поиска, индексирования и анализа

Elasticsearch — это мощный распределенный поисковый и аналитический движок, построенный на Apache Lucene. Это подробное руководство содержит основные команды, лучшие практики и быстрые ссылки для работы с кластерами Elasticsearch.

Создание серверов MCP на Python: руководство по веб-поиску и парсингу

Создание серверов MCP на Python: руководство по веб-поиску и парсингу

Создавайте серверы MCP для ИИ-ассистентов с примерами на Python

Протокол Контекста Модели (MCP) революционизирует способ взаимодействия ИИ-ассистентов с внешними источниками данных и инструментами. В этом руководстве мы исследуем, как строить MCP-серверы на Python, с примерами, сосредоточенными на возможностях веб-поиска и парсинга.

Шпаргалка Docker Model Runner: команды и примеры

Шпаргалка Docker Model Runner: команды и примеры

Справочник команд Docker Model Runner

Docker Model Runner (DMR) — это официальное решение Docker для запуска моделей ИИ локально, представленное в апреле 2025 года. Этот справочник предоставляет быстрый доступ ко всем основным командам, настройкам и лучшим практикам.

Docker Model Runner против Ollama: что выбрать?

Docker Model Runner против Ollama: что выбрать?

Сравните Docker Model Runner и Ollama для локальных LLM

Запуск больших языковых моделей (LLM) локально стал все более популярным благодаря конфиденциальности, контролю затрат и возможностям работы офлайн. Ландшафт значительно изменился в апреле 2025 года, когда Docker представил Docker Model Runner (DMR), свое официальное решение для развертывания моделей ИИ.

Сравнение структурированного вывода среди популярных поставщиков LLM — OpenAI, Gemini, Anthropic, Mistral и AWS Bedrock

Сравнение структурированного вывода среди популярных поставщиков LLM — OpenAI, Gemini, Anthropic, Mistral и AWS Bedrock

Немного отличающиеся API требуют особого подхода.

Вот сравнение поддержки структурированного вывода (получение надежного JSON) среди популярных поставщиков LLM, а также минимальные примеры на Python