Ollama

소비자 하드웨어 상의 AI 인프라

소비자 하드웨어 상의 AI 인프라

예산 하드웨어에 오픈 모델을 사용하여 기업용 AI를 배포하세요.

AI의 민주화 시대가 도래했습니다.
Llama 3, Mixtral, Qwen과 같은 오픈소스 LLM이 이제는 전용 모델과 경쟁할 수 있을 정도로 발전했으며, 팀은 소비자 하드웨어를 사용하여 강력한 AI 인프라를 구축할 수 있습니다. 이는 비용을 절감하면서도 데이터 프라이버시와 배포에 대한 완전한 통제를 유지할 수 있습니다.

NVIDIA DGX Spark vs Mac Studio vs RTX-4080: Ollama 성능 비교

NVIDIA DGX Spark vs Mac Studio vs RTX-4080: Ollama 성능 비교

GPT-OSS 120b의 세 개 AI 플랫폼에서의 벤치마크

저는 NVIDIA DGX Spark, Mac Studio, 그리고 RTX 4080 세 가지 다른 플랫폼에서 Ollama를 사용하여 GPT-OSS 120b의 흥미로운 성능 테스트 결과를 조사했습니다. Ollama 라이브러리에서 제공하는 GPT-OSS 120b 모델은 65GB의 크기를 가지며, 이는 RTX 4080의 16GB VRAM에 맞지 않으므로, 또는 더 최근의 RTX 5080에도 맞지 않습니다.

올라마 엔시티피케이션 - 초기 징후

올라마 엔시티피케이션 - 초기 징후

현재 Ollama 개발의 상태에 대한 제 관점

Ollama은 LLM을 로컬에서 실행하는 데 사용되는 가장 인기 있는 도구 중 하나로 빠르게 자리 잡았습니다.
간단한 CLI와 간소화된 모델 관리 기능 덕분에, 클라우드 외부에서 AI 모델을 사용하고자 하는 개발자들에게 필수적인 선택지가 되었습니다.
하지만 많은 유망한 플랫폼과 마찬가지로, 이미 **Enshittification**의 징후가 나타나고 있습니다.

로컬 올라마 인스턴스의 채팅 UI

로컬 올라마 인스턴스의 채팅 UI

2025년 올라마의 가장 두드러진 UI에 대한 간략한 개요

로컬에서 호스팅된 Ollama는 대형 언어 모델을 자신의 컴퓨터에서 실행할 수 있게 해줍니다. 하지만 명령줄을 통해 사용하는 것은 사용자 친화적이지 않습니다. 다음은 로컬 Ollama에 연결되는 **ChatGPT 스타일의 인터페이스**를 제공하는 여러 오픈 소스 프로젝트입니다.

Hugo 페이지 번역 품질 비교 - Ollama 상의 LLMs

Hugo 페이지 번역 품질 비교 - Ollama 상의 LLMs

qwen3 8b, 14b 및 30b, devstral 24b, mistral small 24b

이 테스트에서는 Ollama에 호스팅된 다양한 LLM이 Hugo 페이지를 영어에서 독일어로 번역하는 방법을 비교하고 있습니다. https://www.glukhov.org/ko/post/2025/06/translation-quality-comparison-llms-on-ollama/ "comparison how different LLMs hosted on Ollama translate Hugo page from English to German".

테스트한 세 페이지는 서로 다른 주제를 다루고 있으며, 마크다운 형식으로 구성되어 있습니다. 헤더, 목록, 표, 링크 등이 포함되어 있습니다.