Hardware

RAM価格の急騰:2025年には最大619%上昇

RAM価格の急騰:2025年には最大619%上昇

RAM価格がAI需要による供給圧力で163〜619%上昇

2025年後半にかけて、メモリ市場はかつてない価格のボラティリティに直面しています。すべてのセグメントにわたってRAMの価格が急騰しており、RAM価格の急騰が深刻な状況となっています。

コンシューマーハードウェア上のAIインフラ

コンシューマーハードウェア上のAIインフラ

予算のハードウェアでオープンモデルを使用して企業向けAIを展開

AIの民主化はここにあります。 Llama 3、Mixtral、QwenなどのオープンソースLLMが、今やプロプライエタリモデルと同等の性能を発揮するようになり、チームは消費者ハードウェアを使用して強力なAIインフラストラクチャを構築できるようになりました。これにより、コストを削減しながらも、データプライバシーやデプロイメントに関する完全なコントロールを維持することが可能です。

NVIDIA DGX Spark vs Mac Studio vs RTX-4080: Ollamaのパフォーマンス比較

NVIDIA DGX Spark vs Mac Studio vs RTX-4080: Ollamaのパフォーマンス比較

GPT-OSS 120bの3つのAIプラットフォームでのベンチマーク

私は、NVIDIA DGX Spark、Mac Studio、およびRTX 4080の3つの異なるプラットフォーム上で、Ollama上で動作するGPT-OSS 120bの興味深いパフォーマンステストをいくつか見つけました。OllamaライブラリのGPT-OSS 120bモデルは65GBあり、これはRTX 4080(または新しいRTX 5080の16GBのVRAMには収まらないことを意味します。

Docker Model Runner チートシート: コマンドと例

Docker Model Runner チートシート: コマンドと例

Docker Model Runner コマンドのクイックリファレンス

Docker Model Runner (DMR) は、2025年4月に導入されたDocker公式のAIモデルをローカルで実行するためのソリューションです。このチートシートは、すべての必須コマンド、設定、ベストプラクティスのクイックリファレンスを提供しています。

GNOME Boxes: 特徴、利点、課題、および代替ソフトウェアに関する包括的なガイド

GNOME Boxes: 特徴、利点、課題、および代替ソフトウェアに関する包括的なガイド

GNOME Boxes による Linux 用のシンプルな仮想マシン管理

現代のコンピューティング環境において、仮想化は開発、テスト、複数のオペレーティングシステムの実行において不可欠となっています。Linuxユーザーが仮想マシンを簡単に管理できる方法を探している場合、GNOME Boxesは、機能性を犠牲にすることなく、軽量で使いやすいオプションとして際立っています。

LLM ASICの台頭:推論ハードウェアがなぜ重要なのか

LLM ASICの台頭:推論ハードウェアがなぜ重要なのか

専用チップにより、AIの推論がより高速かつ低コストになってきている。

AIの未来は、AIがよりスマートなモデルを持つだけでなく、よりスマートなシリコンによって決まる。
LLM推論に特化したハードウェアは、ビットコインマイニングがASICに移行したときと同様の革命をもたらしている。

「DGX Spark vs. Mac Studio: NVIDIAの個人用AIスーパーコンピュータの価格比較」

「DGX Spark vs. Mac Studio: NVIDIAの個人用AIスーパーコンピュータの価格比較」

在庫状況、6か国の実際の小売価格、およびMac Studioとの比較。

NVIDIA DGX Spark は現実のものであり、2025年10月15日に販売開始され、CUDA開発者向けに、統合されたNVIDIA AIスタックを使用してローカルLLM作業を行う必要がある人を対象としています。US MSRPは**$3,999**; UK/DE/JPの小売価格はVATとチャネルの影響で高くなっています。AUD/KRWの公開価格はまだ広く掲載されていません。

NVIDIA DGX Spark - 新しい小型AIスーパーコンピューター

NVIDIA DGX Spark - 新しい小型AIスーパーコンピューター

2025年7月にはすぐに利用可能になるはずです。

NVIDIAは、NVIDIA DGX Sparkを近日中にリリースする予定です。これは、ブラックウェルアーキテクチャを採用し、128GB以上の統合RAMと1 PFLOPSのAI性能を備えた小型のAIスーパーコンピュータです。LLMを実行するための非常に便利なデバイスです。