PyTorch

AI/MLオーケストレーション用のGoマイクロサービス

AI/MLオーケストレーション用のGoマイクロサービス

Goマイクロサービスを使用して堅牢なAI/MLパイプラインを構築しましょう

AIおよび機械学習(ML)ワークロードがますます複雑になるにつれて、強固なオーケストレーションシステムの必要性が高まっています。Goのシンプルさ、パフォーマンス、並行処理能力は、MLパイプラインのオーケストレーションレイヤーを構築する際に理想的な選択肢です。モデル自体がPythonで書かれている場合でも、Goは理想的な選択肢です。https://www.glukhov.org/ja/post/2025/11/go-microservices-for-ai-ml-orchestration-patterns/ “Go in ML orchestration pipelines”。

コンシューマーハードウェア上のAIインフラ

コンシューマーハードウェア上のAIインフラ

予算のハードウェアでオープンモデルを使用して企業向けAIを展開

AIの民主化はここにあります。 Llama 3、Mixtral、QwenなどのオープンソースLLMが、今やプロプライエタリモデルと同等の性能を発揮するようになり、チームは消費者ハードウェアを使用して強力なAIインフラストラクチャを構築できるようになりました。これにより、コストを削減しながらも、データプライバシーやデプロイメントに関する完全なコントロールを維持することが可能です。

PythonでFLUX.1-dev GGUF Q8を実行しています

PythonでFLUX.1-dev GGUF Q8を実行しています

GGUF量子化でFLUX.1-devを高速化

FLUX.1-dev は、驚くほど美しい画像を生成できる強力なテキストから画像生成モデルですが、24GB以上のメモリが必要なため、多くのシステムでは実行が難しいです。 GGUF量化されたFLUX.1-dev は、メモリ使用量を約50%削減しながらも、優れた画像品質を維持するという解決策を提供します。

FLUX.1-Kontext-dev: 画像拡張AIモデル

FLUX.1-Kontext-dev: 画像拡張AIモデル

テキスト指示を使って画像を拡張するためのAIモデル

ブラックフォレスト・ラボズは、FLUX.1-Kontext-devという高度な画像から画像へのAIモデルをリリースしました。このモデルは、テキストの指示を使って既存の画像を補強します。